Some inverse problems for acyclic matrices
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Some Elimination Problems for Matrices
problem: Given: A field K and n variables x1, . . . , xn and m polynomials yi = pi(x1, . . . , xn) ∈ K[x1, . . . , xn] for i = 1, . . . ,m. (1) Aim: Find a presentation for the subring K[y] := K[y1, . . . , ym] of K[x] := K[x1, . . . , xn]. Invariants: The difference of m and the transcendence degree of K(y) := K(y1, . . . , ym) over K will be called the deficiency d = d(y) of the tuple y in K(...
متن کاملReconstructions for some coupled-physics inverse problems
This letter announces and summarizes results obtained in [8] and considers several natural extensions. The aforementioned paper proposes a procedure to reconstruct coefficients in a second-order, scalar, elliptic equation from knowledge of a sufficiently large number of its solutions. We present this derivation and extend it to show which parameters may or may not be reconstructed for several h...
متن کاملFréchet Derivatives for Some Bilinear Inverse Problems
In many inverse problems a functional of u is given by measurements where u solves a partial differential equation of the type L(p)u + Su = q. Here, q is a known source term and L(p), S are operators with p as unknown parameter of the inverse problem. For the numerical reconstruction of p often the heuristically derived Fréchet derivative R′ of the mapping R : p → ’measurement functional of u’ ...
متن کاملStability of Solutions for Some Inverse Problems
In this article we establish three stability results for some inverse problems. More precisely we consider the following boundary value problem: ∆u + λu + μ = 0 in Ω, u = 0 on ∂Ω, where λ and μ are real constants and Ω ⊂ R2 is a smooth bounded simply-connected open set. The inverse problem consists in the identification of λ and μ from knowledge of the normal flux ∂u/∂ν on ∂Ω corresponding to s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 1997
ISSN: 0024-3795
DOI: 10.1016/0024-3795(95)00692-3